RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 458, Pages 236–246 (Mi znsl6460)

Lattice points in the four-dimensional ball

O. M. Fomenko

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Let $r_4(n)$ denote the number of representations of $n$ as a sum of $4$ squares. The generating function $\zeta_4(s)$ is Epstein's zeta function. We consider the Riesz mean
$$ D_\rho(x;\zeta_4)=\frac1{\Gamma(\rho+1)}\sum_{n\leq x}(x-n)^\rho r_4(n) $$
for any fixed $\rho>0$ and define the error term $\Delta_4(x;\zeta_4)$ by
$$ D_\rho(x;\zeta_4)=\frac{\pi^2x^{2+\rho}}{\Gamma(\rho+3)}+\frac{x^\rho}{\Gamma(\rho+1)}\zeta_4(0)+\Delta_\rho(x;\zeta_4). $$
In § 2 one proves that
$$ \Delta_4(x;\zeta_4)= \begin{cases} O(x^{1/2+\rho+\epsilon})&(1<\rho\leq3/2),\\ O(x^{9/8+\rho/4})&(1/2<\rho\leq1),\\ O(x^{5/4+\epsilon})&(0<\rho\leq1/2). \end{cases} $$
In § 3 one proves that
$$ \Delta_{1/2}(x;\zeta_4)=\Omega(x\log^{1/2}x). $$


UDC: 511.466+517.863

Received: 29.09.2017


 English version:
Journal of Mathematical Sciences (New York), 2018, 234:5, 750–757


© Steklov Math. Inst. of RAS, 2024