RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 460, Pages 82–113 (Mi znsl6472)

This article is cited in 1 paper

Double cosets of stabilizers of totally isotropic subspaces in a special unitary group II

N. Gordeevab, U. Rehmannc

a Department of Mathematics, Russian State Pedagogical University, Moijka 48, St. Petersburg, 191186, Russia
b St. Petersburg State University, Universitetsky prospekt, 28, Peterhof, St. Petersburg, 198504, Russia
c Department of Mathematics, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany

Abstract: In the article (N. Gordeev and U. Rehmann. Double cosets of stabilizers of totally isotropic subspaces in a special unitary group I, Zapiski Nauch. Sem. POMI, v. 452 (2016), 86–107) we have considered the decomposition $\mathrm{SU}(D,h)=\cup_iP_u\gamma_iP_v$ where $\mathrm{SU}(D,h)$ is a special unitary group over a division algebra $D$ with an involution, $h$ is a symmetric or skew symmetric non-degenerated Hermitian form, and $P_u,P_v$ are stabilizers of totally isotropic subspaces of the unitary space. Since $\Gamma=\mathrm{SU}(D,h)$ is a point group of a classical algebraic group $\widetilde\Gamma$ there is the “order of adherence” on the set of double cosets $\{P_u\gamma_iP_v\}$ which is induced by the Zariski topology on $\Gamma$. In the current paper we describe the adherence of such double cosets for the cases when $\widetilde\Gamma$ is an orthogonal or a symplectic group (that is, for groups of types $B_r,C_r,D_r$).

Key words and phrases: classical algebraic groups, double cosets of closed subgroups, the order of adherence.

UDC: 512.7+512.81

Received: 12.10.2017

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2019, 240:4, 428–446


© Steklov Math. Inst. of RAS, 2024