RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 460, Pages 190–202 (Mi znsl6477)

This article is cited in 3 papers

The existence of root subgroup translated by a given element into its opposite

I. M. Pevzner

Herzen State Pedagogical University of Russia, St. Petersburg, Russia

Abstract: Let $\Phi$ be a simply-laced root system, $K$ an algebraically closed field, $G=G_\mathrm{ad}(\Phi,K)$ the adjoint group of type $\Phi$ over $K$. Then for every non-trivial element $g\in G$ there exists a root element $x$ of the Lie algebra of $G$ such that $x$ and $gx$ are opposite.

Key words and phrases: Ñhevalley groups, root elements.

UDC: 512.5

Received: 13.10.2017


 English version:
Journal of Mathematical Sciences (New York), 2019, 240:4, 494–502


© Steklov Math. Inst. of RAS, 2025