RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 461, Pages 212–231 (Mi znsl6489)

This article is cited in 1 paper

On an inverse dynamic problem for the wave equation with a potential on a real line

A. S. Mikhaylova, V. S. Mikhaylovb

a St. Petersburg Department of the Steklov Mathematical Institute, Fontanka 27, 191023, St. Petersburg, Russia
b St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia

Abstract: We consider the inverse dynamic problem for the wave equation with a potential on a real line. The forward initial-boundary value problem is set up with a help of boundary triplets. As an inverse data we use an analog of a response operator (dynamic Dirichlet-to-Neumann map). We derive equations of inverse problem and also point out the relationship between dynamic inverse problem and spectral inverse problem from a matrix-valued measure.

Key words and phrases: inverse problem, Schrödinger operator, wave equation, Boundary Control method, boundary triplets.

UDC: 517

Received: 08.10.2017

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2019, 238:5, 701–714


© Steklov Math. Inst. of RAS, 2024