RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1998 Volume 250, Pages 161–190 (Mi znsl649)

This article is cited in 1 paper

Abel–Lidskii bases in non-selfadjoint inverse boundary problem

Ya. V. Kuryleva, M. Lassasb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Rolf Nevanlinna Institute, Department of Mathematics and Statistics, University of Helsinki

Abstract: Let $M$ be a manifold with bondary $\partial M\ne\varnothing$. Let $A$ be a 2-nd order elliptic PDO on $M$. Denote by $R_\lambda(x,y)$, $x$, $y\in M$, $\lambda\in\mathbb C\setminus\sigma(A)$ the Schwartz kernel of $(A-\lambda I)^{-1}$. We consider the Gel'fand inverse boundary problem of the reconstruction of $(M,A)$ via given $R_\lambda(x,y)$, $x$, $y\in\partial M$, $\lambda\in\mathbb C$. We prove that if the main symbol of $A$ satisfies some geometrical condition (Bardos–Lebeau–Rauch condition) then these data determine $M$ uniquely and $A$ to within the group of the generalized gauge transformations on $M$. The above mentioned geometric condition means, roughly speaking, that any geodesics (in the metric generated by $A$) leaves $M$.

UDC: 517.946

Received: 16.10.1997


 English version:
Journal of Mathematical Sciences (New York), 2000, 102:4, 4237–4257

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024