RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 462, Pages 52–64 (Mi znsl6496)

Discrete Morse theory for the barycentric subdivision

A. Zhukova

St. Petersburg State University, St. Petersburg, Russia

Abstract: Let $F$ be a discrete Morse function on a simplicial complex $L$. We construct a discrete Morse function $\Delta(F)$ on the barycentric subdivision $\Delta(L)$. The constructed function $\Delta(F)$ “behaves the same way” as $F$, i.e., has the same number of critical simplices and the same gradient path structure.

Key words and phrases: simplicial complexes, discrete Morse theory.

UDC: 515.142.332

Received: 16.08.2017

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2018, 232:2, 129–137

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024