RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 463, Pages 81–93 (Mi znsl6508)

This article is cited in 8 papers

Orthogonality graphs of matrices over skew fields

A. E. Guterman, O. V. Markova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia

Abstract: The paper is devoted to studying the orthogonality graph of the matrix ring over a skew field. It is shown that for $n\geq3$ the orthogonality graph of the $n\times n$ matrix ring $M_n(\mathbb D)$ over a skew field $\mathbb D$ is connected and has diameter $4$ for an arbitrary skew field $\mathbb D$. If $n=2$, then the graph of the ring $M_n(\mathbb D)$ is a disjoint union of connected components of diameters $1$ and $2$. As a corollary, we obtain related results on the orthogonality graphs of simple Artinian rings.

Key words and phrases: graphs of matrix relations, orthogonality graph, matrices over a skew field.

UDC: 512.643

Received: 31.10.2017


 English version:
Journal of Mathematical Sciences (New York), 2018, 232:6, 797–804

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024