RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 463, Pages 94–111 (Mi znsl6509)

This article is cited in 1 paper

On the determinantal range of matrix products

A. Gutermana, G. Soaresb

a Lomonosov Moscow State University, Russia
b Universidade de Trás-os-Montes e Alto Douro, Portugal

Abstract: Let matrices $A,C\in M_n$ have eigenvalues $\alpha_1,\dots,\alpha_n$ and $\gamma_1,\dots,\gamma_n$, respectively. The set $D_C(A)=\{\det(A-UCU^*)\colon U\in M_n,\ U^*U=I_n\}$ of complex numbers is called the $C$-determinantal range of $A$. The paper studies various conditions under which the relation $D_C(RS)=D_C(SR)$ holds for some matrices $R$ and $S$.

Key words and phrases: $C-$determinantal range, numerical range, matrix products.

UDC: 512.643

Received: 01.11.2017


 English version:
Journal of Mathematical Sciences (New York), 2018, 232:6, 805–815

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024