RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 464, Pages 112–131 (Mi znsl6525)

A bound on the number of leaves in a spanning tree of a connected graph of minimal degree 6

E. N. Simarova

St. Petersburg State University, St. Petersburg, Russia

Abstract: It is proved, that a connected graph of minimal degree 6 has a spanning tree, such that at least $\frac{11}{21}$ of its vertices are leaves.

Key words and phrases: distance graph, independence number, Turán type bounds.

UDC: 519.172.1

Received: 27.11.2017


 English version:
Journal of Mathematical Sciences (New York), 2019, 236:5, 542–553


© Steklov Math. Inst. of RAS, 2025