RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 464, Pages 132–168 (Mi znsl6526)

This article is cited in 6 papers

Turán type results for distance graphs in infinitesimal plane layer

L. E. Shabanov

Department of Innovations and High Technology, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia

Abstract: In this paper we obtain the lower bound of number of edges in a unit distance graph $\Gamma$ in an infinitesimal plane layer $\mathbb R^2\times[0,\varepsilon]^d$ which compares number of edges $e(\Gamma)$, number of vertices $\nu(\Gamma)$ and independence number $\alpha(\Gamma)$. Our bound $e(\Gamma)\ge\frac{19\nu\Gamma)-50\alpha(\Gamma)}3$ is generalizing of previous bound for distance graphs in plane and a strong upgrade of Turán's bound when $\frac15\le\frac{\alpha(\Gamma)}{\nu(\Gamma)}\le\frac27$.

Key words and phrases: distance graph, independence number, Turán type bounds.

UDC: 519.173

Received: 03.11.2017


 English version:
Journal of Mathematical Sciences (New York), 2019, 236:5, 554–578


© Steklov Math. Inst. of RAS, 2025