RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2017 Volume 465, Pages 82–104 (Mi znsl6532)

This article is cited in 1 paper

SOS-representation for the $SL(2,\mathbb C)$-invariant $R$-operator and Feynman diagrams

P. A. Valinevicha, S. E. Derkachova, A. P. Isaevb

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia

Abstract: In the first part of the paper the basic facts about unitary seires representations of the group $SL(2,\mathbb C)$ and corresponding solutions to the Yang–Baxter equatins are given. In the second part we derive SOS-representation of the $R$-operator and prove the corresponding Yang–Baxter equation. Using Feynman diagrams we perform the calculation of the kernel of the R-operator in SOS-represetation. The expression for the kernel is presented in the form of Mellin–Barnes integral.

Key words and phrases: Yang–Baxter equation, $R$-matrix, $6j$-symbols.

UDC: 517.9

Received: 06.12.2017


 English version:
Journal of Mathematical Sciences (New York), 2019, 238:6, 819–833


© Steklov Math. Inst. of RAS, 2025