RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 467, Pages 67–72 (Mi znsl6564)

This article is cited in 1 paper

Extended Cesàro operators between Hardy and Bergman spaces on the complex ball

E. S. Dubtsov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: We characterize those holomorphic symbols $g$ for which the extended Cesàro operator $V_g$ maps the Hardy space $H^p(B)$ into the weighted Bergman space $A^q_\beta(B)$, $0<p<q<\infty$, $\beta>-1$, on the unit ball $B$ of $\mathbb C^d$.

Key words and phrases: Hardy space, Bergman space, extended Cesàro operator.

UDC: 517.55+517.98

Received: 27.08.2018


 English version:
Journal of Mathematical Sciences (New York), 2019, 243:6, 867–871

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024