RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 467, Pages 34–54 (Mi znsl6565)

This article is cited in 1 paper

On the absolute convergence of Fourier–Haar series in the metric of $L^p(0,1)$, $0<p<1$

M. G. Grigoryan

Faculty of Physics, Yerevan State University, Yerevan, Armenia

Abstract: It is proved that for any $0<\epsilon<1$ there exists a measurable set $E\subset[0,1]$ with $|E|>1-\epsilon$ such that for any function $f(x)\in L^1[0,1]$ one can find a function $g(x)\in L^1[0,1]$ equal to $f(x)$ on $E$ such that its Fourier–Haar series converges absolutely in the metric of $L^p(0,1)$, $0<p<1$.

Key words and phrases: Haar series, modification of functions, absolute convergece in the metric of $L^p(0,1)$, $0<p<1$.

UDC: 517.518

Received: 08.06.2018


 English version:
Journal of Mathematical Sciences (New York), 2019, 243:6, 844–858

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024