RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 467, Pages 73–84 (Mi znsl6566)

This article is cited in 3 papers

On products of Weierstrass sigma functions

A. A. Illarionovab

a Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, Khabarovsk, Russia
b Pacific National University, Khabarovsk, Russia

Abstract: We prove the following result. Let $f\colon\mathbb C\to\mathbb C$ be an even entire function. Let there exist $\alpha_j,\beta_j\colon\mathbb C\to\mathbb C$ with
$$ f(x+y) f(x-y) = \sum_{j=1}^4\alpha_j(x)\beta_j(y),\qquad x,y\in\mathbb C. $$
Then $f(z)=\sigma_L(z)\cdot\sigma_\Lambda(z)\cdot e^{Az^2+C}$, where $L$ and $\Lambda$ are lattices in $\mathbb C$, $\sigma_L$ is the Weierstrass sigma function associated to the lattice $L$, and $A,C\in\mathbb C$.

Key words and phrases: elliptic functions, functional equation, the Weierstrass sigma function, addition theorems.

UDC: 517.58

Received: 29.01.2018


 English version:
Journal of Mathematical Sciences (New York), 2019, 243:6, 872–879

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024