RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 467, Pages 85–107 (Mi znsl6567)

This article is cited in 1 paper

Kernels of Toeplitz operators and rational interpolation

V. V. Kapustin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: The kernel of a Toeplitz operator on the Hardy class $H^2$ in the unit disk is a nearly invariant subspace of the backward shift operator, and, by D. Hitt's result, it has the form $g\cdot K_\omega$, where $\omega$ is an inner function, $K_\omega=H^2\ominus\omega H^2$, and $g$ is an isometric multiplier on $K_\omega$. We describe the functions $\omega$ and $g$ for the kernel of the Toeplitz operator with symbol $\bar\theta\Delta$, where $\theta$ is an inner function and $\Delta$ is a finite Blaschke product.

Key words and phrases: inner function, nearly invariant subspaces, Schur algorithm.

UDC: 517.58

Received: 13.08.2018


 English version:
Journal of Mathematical Sciences (New York), 2019, 243:6, 880–894

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024