RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 467, Pages 108–115 (Mi znsl6568)

This article is cited in 1 paper

A remark on indicator functions with gaps in the spectrum

S. V. Kislyakov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Developing a recent result of F. Nazarov and A. Olevskii, we show that for every subset $a$ of $\mathbb R$ of finite measure and every $\varepsilon>0$, there exists $b\subset\mathbb R$ with $|b|=|a|$ and $|(b\setminus a)\cup (a\setminus b)|\le\varepsilon$ such that the spectrum of $\chi_b$ is fairly thin. A generalization to locally compact Abelian groups is also provided.

Key words and phrases: uncertaintly principle, Men'shov correction theorem.

UDC: 517.58

Received: 27.08.2018


 English version:
Journal of Mathematical Sciences (New York), 2019, 243:6, 895–899

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024