RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 467, Pages 151–168 (Mi znsl6572)

This article is cited in 18 papers

The Stieltjes integrals in the theory of harmonic functions

V. Ryazanov

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, room 417, 19 General Batyuk Str., Slavyansk, 84116, Ukraine

Abstract: We study various Stieltjes integrals, such as Poisson–Stieltjes, conjugate Poisson–Stieltjes, Schwartz–Stieltjes and Cauchy–Stieltjes, and prove theorems on the existence of their finite angular limits a.e. in terms of the Hilbert–Stieltjes integral. These results are valid for arbitrary bounded integrands that are differentiable a.e. and, in particular, for integrands of the class $\mathcal{CBV}$ (countably bounded variation).

Key words and phrases: harmonic functions, angular limits, Stieltjes, Poisson–Stieltjes, Schwartz–Stieltjes, Cauchy–Stieltjes and Hilbert–Stieltjes integrals.

UDC: 517.57

Received: 31.05.2018

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2019, 243:6, 922–933

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025