RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 467, Pages 215–237 (Mi znsl6576)

Interpolation in a Bernstein space by means of approximation

N. A. Shirokovab

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: We denote by $B_\sigma$ the Bernstein space of entire functions of exponential type $\leq\sigma$ bounded on the real axis. Let $\Lambda=\{z_n\}_{n\in\mathbb Z}$, $z_n=x_n+iy_n$, be a sequence such that $x_{n+1}-x_n\geq l>0$ and $|y_n|\leq L$, $n\in\mathbb Z$. We prove that for any sequence $A=\{a_n\}_{n\in~\mathbb Z}$ of bounded $a_n$, $|a_n|\leq M$, $n\in\mathbb Z$, there exists a function $f\in B_\sigma$ with $\sigma\leq\sigma_0(l,L)$ such that $f|_\Lambda=A$. We use a method of approximation by mean of functions from a Bernstein space.

Key words and phrases: functions of exponential type, Bernstein space, interpolation, approximation.

UDC: 517.53

Received: 04.12.2017


 English version:
Journal of Mathematical Sciences (New York), 2019, 243:6, 965–980

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025