Abstract:
A mapping between operators on the Hilbert space of $N$-dimensional quantum system and the Wigner quasiprobability distributions defined on the symplectic flag manifold is discussed. The Wigner quasiprobability distribution is constructed as a dual pairing between the density matrix and the Stratonovich–Weyl kernel. It is shown that the moduli space of the Stratonovich–Weyl kernel is given by an intersection of the coadjoint orbit space of the $SU(N)$ group and a unit $(N-2)$-dimensional sphere. The general consideration is exemplified by a detailed description of the moduli space of $2,3$ and $4$-dimensional systems.
Key words and phrases:Wigner function, quasiprobability distribution, moduli space, group actions, Lie group orbits, Stratonovich–Weyl kernel.