RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 468, Pages 58–74 (Mi znsl6586)

This article is cited in 2 papers

I

The boundary of the refined Kingman graph

M. V. Karev, P. P. Nikitin

St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia

Abstract: We introduce the refined Kingman graph $\mathbb D$ whose vertices are indexed by the set of compositions of positive integers and multiplicity function reflects the Pieri rule for quasisymmetric monomial functions. We show that the Martin boundary of $\mathbb D$ can be identified with the space $\Omega$ of all sets of disjoint open subintervals of $[0,1]$ and coincides with the minimal boundary of $\mathbb D$.

Key words and phrases: Kingman graph, refined Kingman graph, quasisymmetric monomial functions, Martin boundary, ergodic central measures, absolute.

UDC: 519.217.72+517.987

Received: 23.08.2018

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2019, 240:5, 539–550

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024