RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 468, Pages 82–97 (Mi znsl6591)

This article is cited in 8 papers

I

The limit shape of a probability measure on a tensor product of modules of the $B_n$ algebra

A. A. Nazarova, O. V. Postnovab

a St. Petersburg State University, 198904, Ulyanovskaya 1, St. Petersburg, Russia
b St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia

Abstract: We study a probability measure on the integral dominant weights in the decomposition of the $N$th tensor power of the spinor representation of the Lie algebra $\mathrm{so}(2n+1)$. The probability of a dominant weight $\lambda$ is defined as the dimension of the irreducible component of $\lambda$ divided by the total dimension $2^{nN}$ of the tensor power. We prove that as $N\to\infty$, the measure weakly converges to the radial part of the $\mathrm{SO}(2n+1)$-invariant measure on $\mathrm{so}(2n+1)$ induced by the Killing form. Thus, we generalize Kerov's theorem for $\mathrm{su}(n)$ to $\mathrm{so}(2n+1)$.

Key words and phrases: orthogonal matrix, limit shape, central limit theorem, tensor product decomposition.

UDC: 519.214.7

Received: 31.07.2018

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2019, 240:5, 556–566

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025