RUS
ENG
Full version
JOURNALS
// Zapiski Nauchnykh Seminarov POMI
// Archive
Zap. Nauchn. Sem. POMI,
2018
Volume 469,
Pages
160–174
(Mi znsl6601)
This article is cited in
1
paper
Number of non-zero cubic sums
N. D. Filonov
ab
a
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b
St. Petersburg State University, St. Petersburg, Russia
Abstract:
The exponential sums $S_q(a,m)=\sum_{l=1}^q\exp(2\pi i(al^3+ml)q^{-1})$ are considered. For every natural
$q$
, the explicit formulas for the number of non-zero sums among
$S_q(a,0),\dots,S_q(a,q-1)$
are found.
Key words and phrases:
exponential cubic sums.
UDC:
511
Received:
19.06.2018
Fulltext:
PDF file (199 kB)
References
Cited by
English version:
Journal of Mathematical Sciences (New York), 2019,
242
:4,
575–585
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2024