RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 469, Pages 160–174 (Mi znsl6601)

This article is cited in 1 paper

Number of non-zero cubic sums

N. D. Filonovab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia

Abstract: The exponential sums $S_q(a,m)=\sum_{l=1}^q\exp(2\pi i(al^3+ml)q^{-1})$ are considered. For every natural $q$, the explicit formulas for the number of non-zero sums among $S_q(a,0),\dots,S_q(a,q-1)$ are found.

Key words and phrases: exponential cubic sums.

UDC: 511

Received: 19.06.2018


 English version:
Journal of Mathematical Sciences (New York), 2019, 242:4, 575–585

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024