RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 470, Pages 179–193 (Mi znsl6619)

This article is cited in 2 papers

Separability of Schur rings over an abelian group of order $4p$

G. K. Ryabov

Novosibirsk State University, Novosibirsk, Russia

Abstract: An $S$-ring (a Schur ring) is said to be separable with respect to a class of groups $\mathcal K$ if every its algebraic isomorphism to an $S$-ring over a group from $\mathcal K$ is induced by a combinatorial isomorphism. We prove that every Schur ring over an abelian group $G$ of order $4p$, where $p$ is a prime, is separable with respect to the class of abelian groups. This implies that the Weisfeiler–Leman dimension of the class of Cayley graphs over $G$ is at most 2.

Key words and phrases: Schur rings, Cayley graphs, Cayley graph isomorphism problem.

UDC: 512.542.3+519.178

Received: 01.05.2018


 English version:
Journal of Mathematical Sciences (New York), 2019, 243:4, 624–632

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025