RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 471, Pages 76–85 (Mi znsl6625)

This article is cited in 3 papers

On the Bateman–Hörmander solution of the wave equation, having a singularity at a running point

A. S. Blagoveshchenskya, A. M. Tagirdzhanovab, A. P. Kiselevcd

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Electrotechnical University, St. Petersburg, Russia
c Steklov Mathematical Institute, St. Petersburg Branch, St. Petersburg, Russia
d Institute of Mechanical Engineering RAS, St. Petersburg, Russia

Abstract: Hörmander have presented a remarkable example of a solution of the homogeneous wave equation, which has a singularity at a running point. We are concerned with analytic investigation of this solution for the case of three spatial variables. We describe its support, study its behavior near the singular point and establish its local integrability. We observe that the Hörmander solution is a specialization of a solution found by Bateman five decades in advance.

Key words and phrases: wave equation, explicit solutions, solutions with a singularity at a running point, Bateman solution, Hörmander solution.

UDC: 517

Received: 01.11.2018

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2019, 243:5, 682–688

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024