RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 472, Pages 98–102 (Mi znsl6643)

On a finite algorithm for calculating neutral subspaces of skew-symmetric matrices

Kh. D. Ikramov

Lomonosov Moscow State University, Moscow, Russia

Abstract: Let $K$ be a nonsingular skew-symmetric matrix of an even order $n = 2m$. For such a matrix, we propose a finite algorithm, using only arithmetic operations and quadratic radicals, for calculating an $m$-dimensional neutral subspace. The necessity of calculating neutral subspaces originates in the problem of solving quadratic matrix equations.

Key words and phrases: skew-symmetric matrix, $J$-symmetric matrix, symplectic matrix, Van Loan's algorithm.

UDC: 512.643.8

Received: 01.03.2018



© Steklov Math. Inst. of RAS, 2024