RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 473, Pages 174–193 (Mi znsl6661)

Conformal limit for dimer models on the hexagonal lattice

D. Keatinga, N. Reshetikhinbca, A. Sridhard

a Department of Mathematics, University of California, Berkeley, CA 94720, USA
b St. Petersburg University, Russia
c KdV Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
d Google LLC

Abstract: In this note we derive the asymptotical behavior of local correlation functions in dimer models on a domain of the hexagonal lattice in the continuum limit, when the size of the domain goes to infinity and parameters of the model scale appropriately.

Key words and phrases: dimer models, Dirac fermions, Kasteleyn operator, Burgers equation, conformal correlation functions.

UDC: 517.9

Received: 22.11.2018

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2019, 242:5, 701–714

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024