RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 474, Pages 90–107 (Mi znsl6670)

Distribution of complex algebraic numbers on the unit circle

F. Götzea, A. Gusakovaa, Z. Kabluchkob, D. Zaporozhetsc

a Faculty of Mathematics, Bielefeld University, P. O. Box 10 01 31, 33501 Bielefeld, Germany
b Münster University, Orléans-Ring 10, 48149 Münster, Germany
c St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, 191023 St. Petersburg, Russia

Abstract: For $-\pi\leq\beta_1<\beta_2\leq\pi$ denote by $\Phi_{\beta_1,\beta_2}(Q)$ the number of algebraic numbers on the unit circle with arguments in $[\beta_1,\beta_2]$ of degree $2m$ and with elliptic height at most $Q$. We show that
$$ \Phi_{\beta_1,\beta_2}(Q)=Q^{m+1}\int\limits_{\beta_1}^{\beta_2}{p(t)}\,\mathrm{d}t+O\left(Q^m\,\log Q\right),\quad Q\to\infty, $$
where $p(t)$ coincides up to a constant factor with the density of the roots of some random trigonometric polynomial. This density is calculated explicitly using the Edelman–Kostlan formula.

Key words and phrases: Bombieri norm, distribution of algebraic numbers, integral polynomials, random trigonometric polynomials, real zeros.

UDC: 519.2

Received: 06.10.2018

Language: English



© Steklov Math. Inst. of RAS, 2024