RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 474, Pages 139–148 (Mi znsl6674)

An estimation problem for the intensity density of Poisson processes

I. A. Ibragimovab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Saint Petersburg State University, Saint Petersburg, Russia

Abstract: A Poisson process $X_\varepsilon(t)$ with the intensity density function $\varepsilon^{-1}\lambda(t)$ is observed on an interval $[a,b]$. The problem is to estimate the function $\lambda(t)$. It is known that the unknown function $\lambda(t)$ belongs to a given class of functions analytic in a given region $G\supset[a,b]$ and is bounded there by a given constant $M$. The parameter $\varepsilon$ is supposed to be known and we consider the problem as $\varepsilon\to0$.

Key words and phrases: Poisson proces, intensity, projective estimators.

UDC: 519.2

Received: 23.11.2018



© Steklov Math. Inst. of RAS, 2024