RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2018 Volume 475, Pages 174–189 (Mi znsl6690)

This article is cited in 2 papers

On the chromatic numbers corresponding to exponentially Ramsey sets

A. A. Sagdeev

Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region, Russia

Abstract: In this paper, nontrivial upper bounds on the chromatic numbers of the spaces $\mathbb{R}^n_p=(\mathbb{R}^n, l_p)$ with forbidden monochromatic sets are proved. In the case of forbidden rectangular parallelepiped or a regular simplex, explicit exponential lower bounds on the chromatic numbers are obtained. Exact values of the chromatic numbers of the spaces $\mathbb{R}^n_p$ with forbidden regular simplex in case $p = \infty$ are found.

Key words and phrases: chromatic number, Euclidean Ramsey theory, exponentially Ramsey set, regular simplex.

UDC: 517

Received: 12.11.2018



© Steklov Math. Inst. of RAS, 2024