RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2019 Volume 478, Pages 100–107 (Mi znsl6747)

On Thompson's conjecture for finite simple exceptional groups of Lie type

I. B. Gorshkova, I. B. Kaygorodovb, A. V. Kukharevc, A. A. Shlepkind

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Universidade Federal do ABC, Santo Andre, Brazil
c Vitebsk State University, Vitebsk, Belarus
d Siberian Federal University, Krasnoyarsk, Russia

Abstract: Let $G$ be a finite group and $N(G)$ be its set of conjugacy class sizes. In the present paper it is proved $G\simeq L$ if $N(G)=N(L)$, where $G$ is a finite group with trivial center and $L$ is a finite simple group of exceptional Lie type.

Key words and phrases: finite group, simple group, exceptional group of Lie type, conjugacy classes, Thompson conjecture.

UDC: 512.542.6

Received: 05.02.2019

Language: English



© Steklov Math. Inst. of RAS, 2024