Abstract:
We introduce classes of analytic functions in a disc and holomorphic functions in a ball that satisfy a Hölder condition in a Lebesgue norm with variable exponent. We describe outer functions in the disc and state the drop of the smoothness of a function in comparison with the smoothness of its modulus on the boundary in the case of the disc and the ball.
Key words and phrases:Nevanlinna inner-outer factorization, outer functions, Lebesgue spaces with variable exponent.