RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2004 Volume 318, Pages 147–202 (Mi znsl684)

This article is cited in 11 papers

On the $(x,t)$ asymptotic properties of solutions of the Navier–Stokes equations in the half-space

F. Crispo, P. Maremonti

Seconda Università degli Studi di Napoli

Abstract: We study the space-time asymptotic behavior of classical solutions of the initial boundary value problem for the Navier–Stokes system in the half-space. We construct a (local in time) solution corresponding to an initial data assumed only continuous and decreasing at infinity as $|x|^{-\mu}$, $\mu\in(\frac12,n)$. We prove pointwise estimates in the space variable. Moreover, if $\mu\in[1,n)$ and the initial data is suitably small, the above solutions in global (in time) and we prove space-time pointwise estimates.

UDC: 517

Received: 12.11.2004

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2006, 136:2, 3735–3767

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024