RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1998 Volume 252, Pages 7–12 (Mi znsl686)

This article is cited in 1 paper

On intersections of convex bodies

V. A. Zalgaller

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $K_0,K_1,\dots,K_m$ be nonempty convex bodies in $\mathbb R^n$. Let $r_1,\dots,r_m$ be vectors in $\mathbb R^n$, $\rho=(r_1,\dots,r_m)\in\mathbb R^{nm}$. Then the set $D=\{\rho\mid\Phi(\rho)K_0\cap\bigcap^m_{i=1}(K_i+r_i)\ne\varnothing\}$ is convex in $\mathbb R^{nm}$, and the family of sets $\{\Phi(\rho)\mid\rho\in D\}$ is concave. Let $k=\max\limits_\rho\dim\Phi(\rho)\ge1$. Then for the volume $\operatorname{Vol}_{k}\Phi(\rho)=W_0(\Phi(\rho))$ and for all mean cross-sectional measures $W_\nu(\Phi(\rho))$, $\nu=0,1,\dots,k-1$, the function $\sqrt[k-\nu]{W_\nu(\Phi(\rho))}$ is concave on the set $D$.

UDC: 514.518

Received: 02.03.1998


 English version:
Journal of Mathematical Sciences (New York), 2001, 104:4, 1255–1258

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025