RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2019 Volume 486, Pages 178–189 (Mi znsl6889)

This article is cited in 2 papers

Non-asymptotic analysis of Lawley–Hotelling statistic for high dimensional data

A. A. Lipateva, V. V. Ulyanovba

a Lomonosov Moscow State University
b National Research University "Higher School of Economics", Moscow

Abstract: We consider General Linear Model (GLM) that includes multivariate analysis of variance (MANOVA) and multiple linear regression as special cases. In practice, there are several widely used criteria for GLM: Wilks’ lambda, Bartlett–Nanda–Pillai test, Lawley–Hotelling test and Roy maximum root test. Limiting distributions for the first three mentioned tests are known under different asymptotic settings. In the present paper we get the computable error bounds for normal approximation of Lawley–Hotelling statistic when dimensionality grows proportionally to sample size. This result enables us to get more precise calculations of the p-values in applications of multivariate analysis. In practice, more and more often analysts encounter situations when the number of factors is large and comparable with the sample size. Examples include medicine, biology (i.e., DNA microarray studies) and finance.

Key words and phrases: computable estimates, accuracy of approximation, MANOVA, computable error bounds, Lawley–Hotelling Statistic, high dimensional data.

UDC: 519.2

Received: 05.11.2019



© Steklov Math. Inst. of RAS, 2025