RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2019 Volume 486, Pages 254–264 (Mi znsl6895)

This article is cited in 1 paper

On a limit theorem related to a Cauchy problem solution for the Schrödinger equation with a fractional derivative operator of the order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$

M. V. Platonovaab, S. V. Tsykinc

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
c Saint Petersburg State University

Abstract: We prove a limit theorem on convergence of mathematical expectations of functionals of sums of independent random variables to a Cauchy problem solution for the nonstationary Schrödinger equation with a symmetric fractional derivative operator of the order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$ in the right hand side.

Key words and phrases: fractional derivative, Schrödinger equation, limit theorems.

UDC: 519.2

Received: 05.11.2019



© Steklov Math. Inst. of RAS, 2024