RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1998 Volume 252, Pages 52–61 (Mi znsl691)

This article is cited in 1 paper

Linear nets and convex polyhedra

A. O. Ivanov, A. A. Tuzhilin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: It is proved that the set $[G,\varphi]_\Gamma$ of immersed linear networks in $\mathbb R^N$ which are parallel to a given immersed linear network $\Gamma\colon G\to\mathbb R^N$ and have the same boundary $\varphi$ as $\Gamma$, can be configuration space of movable vertices of the graph $G$. Also, the dimension of the space $[G,\varphi]_\Gamma$ is calculated, and the number of faces is estimated. As an application, the space of all local minimal and weighted local minimal networks in $\mathbb R^N$ with fixed topology and boundary is described.

UDC: 514.518

Received: 01.12.1997


 English version:
Journal of Mathematical Sciences (New York), 2001, 104:4, 1283–1288

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024