RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1998 Volume 252, Pages 149–164 (Mi znsl699)

Description of a class of solids in $\mathbb R^3$

N. D. Lebedeva

Saint-Petersburg State University

Abstract: Let $Q\subset\mathbb R^3$ be a compact convex solid such that for each parallel (not necessarily orthogonal) projection onto any plane no two antipodal faces of the solid are projected strictly inside the projection of all $Q$. Then $Q$ is either a cone with a convex base or a frustrum of a trihedral pyramid or a prism (possibly with nonparallel bases).

UDC: 514.113

Received: 13.04.1998


 English version:
Journal of Mathematical Sciences (New York), 2001, 104:4, 1348–1357

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025