RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2020 Volume 491, Pages 43–51 (Mi znsl6992)

This article is cited in 1 paper

Singular integral operators on Zygmund spaces on domains

A. V. Vasin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: Given a bounded Lipschitz domain $D\subset \mathbb{R}^d$ and a Calderón–Zygmund operator $T$, we study the relationship between smoothness properties of $\partial D$ and the boundedness of $T$ on the Zydmund space $\mathcal{C}_{\omega}(D)$ defined for a general growth function $\omega$. We prove a T(P)-theorem for the Zygmund spaces, checking the boundedness of $T$ on a finite collection of polynomials restricted to the domain. Also, we obtain a new form of an extra cancellation property for the even Calderón–Zygmund operators in polynomial domains.

Key words and phrases: Calderón–Zygmund operators with even kernel, Zygmund classes, T(P) theorem.

UDC: 517.518.13, 517.982.13

Received: 21.09.2020



© Steklov Math. Inst. of RAS, 2025