RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2020 Volume 498, Pages 75–104 (Mi znsl6994)

II

Projected and near-projected embeddings

P. M. Akhmetievab, S. A. Melikhovc

a IZMIRAN, Troitsk, Russia
b HSE Tikhonov Institute of Electronics and Mathematics, Moscow, Russia
c Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: A stable smooth map $f N\to M$ is called $k$-realizable if its composition with the inclusion $M\subset M\times\mathbb{R}^k$ is $C^0$-approximable by smooth embeddings; and a $k$-prem if the same composition is $C^\infty$-approximable by smooth embeddings, or, equivalently, if $f$ lifts vertically to a smooth embedding $N\hookrightarrow M\times\mathbb{R}^k$.
It is obvious that if $f$ is a $k$-prem, then it is $k$-realizable. We refute the so-called “prem conjecture” that the converse holds. Namely, for each $n=4k+3\ge 15$ there exists a stable smooth immersion $S^n\looparrowright\mathbb{R}^{2n-7}$ that is $3$-realizable but is not a $3$-prem.
We also prove the converse in a wide range of cases. A $k$-realizable stable smooth fold map $N^n\to M^{2n-q}$ is a $k$-prem if $q\le n$ and $q\le 2k-3$; or if $q<n/2$ and $k=1$; or if $q\in\{2k-1, 2k-2\}$ and $k\in\{2,4,8\}$ and $n$ is sufficiently large.

Key words and phrases: $k$-prem, $k$-realizable map, stable smooth maps, stable PL maps, stable $\mathbb{Z}/2$-equivariant maps, comanifolds (mock bundles).

UDC: 515.164.6, 515.164.15

Received: 16.10.2020

Language: English


ArXiv: 1711.03520


© Steklov Math. Inst. of RAS, 2024