RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2020 Volume 496, Pages 43–60 (Mi znsl7013)

Linear immanant converters on skew-symmetric matrices of order $4$

A. E. Gutermanab, M. A. Duffnerc, I. A. Spiridonovbde

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
c Universidade de Lisboa
d National Research University "Higher School of Economics", Moscow
e Moscow Center for Continuous Mathematical Education

Abstract: Let $Q_n$ denote the space of all $n\times n$ skew-symmetric matrices over the complex field $\mathbb{C}$. It is proved that for $n = 4$, there are no linear maps $ T :Q_4\to Q_4$ satisfying the condition $ d_{\chi'} ( T (A) ) =d_{\chi} (A) $ for all matrices $ A\in Q_4$, where $\chi, \chi' \in \{1, \epsilon, [2,2]\}$ are two distinct irreducible characters of $S_4$. In the case $\chi=\chi'=1$, a complete characterization of the linear maps $T :Q_4\to Q_4$ preserving the permanent is obtained. This case is the only one corresponding to equal characters and remaining uninvestigated so far.

Key words and phrases: immanants, skew-symmetric matrices, linear maps.

UDC: 512.643

Received: 12.10.2020



© Steklov Math. Inst. of RAS, 2024