RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2020 Volume 497, Pages 100–123 (Mi znsl7029)

This article is cited in 1 paper

Partitioning of plane sets into $6$ subsets of small diameter

V. O. Koval'

Uniwersytet Jagielloński (Jagiellonian university) ul. Gołebia 24, 31-007 Kraków, Polska

Abstract: In 1956, H. Lenz introduced a problem, which was to find members of the sequence
$$d_n=\inf_{\Phi}\{x\in \mathbb{R}^{+}:\Phi \subset \Phi_1 \cup \Phi_2 \cup \dots \cup \Phi_n, \forall i \,\textrm{diam}\, \Phi_i \leq x \}$$
where infimum is taken over all sets $\Phi$ of unit diameter. In this paper, we improve an upper bound for $d_6$ to $0.53432\dots $.

Key words and phrases: Bosruk's conjecture, coverings of plane sets, diameter.

UDC: 519.147

Received: 01.12.2020



© Steklov Math. Inst. of RAS, 2025