RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2021 Volume 506, Pages 113–129 (Mi znsl7148)

Construction of solutions of Toda lattices by the classical moment problem

A. S. Mikhailovab, V. S. Mikhailovab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University

Abstract: Making use of formulas of J. Moser for a finite-dimensional Toda lattices, we derive the evolution law for moments of the spectral measure of the semi-infinite Jacobi operator associated with the nonlinear system. This allows us to construct solutions of semi-infinite Toda lattices for a wide class of unbounded initial data by using well-known results from the classical moment problem theory.

Key words and phrases: Toda lattice, moment problem, Jacobi matrices.

UDC: 517.9

Received: 04.11.2021



© Steklov Math. Inst. of RAS, 2024