RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2022 Volume 510, Pages 65–86 (Mi znsl7194)

Local laws for sparse sample covariance matrices without the truncation condition

F. Götzea, A. N. Tikhomirovb, D. A. Timushevb

a Faculty of Mathematics, Bielefeld University, Bielefeld, Germany
b Institute of Physics and Mathematics, Komi Science Center of Ural Division of RAS Syktyvkar, Russia

Abstract: We consider sparse sample covariance matrices $\frac1{np_n}\mathbf X\mathbf X^*$, where $\mathbf X$ is a sparse matrix of order $n\times m$ with the sparse probability $p_n$. We prove the local Marchenko–Pastur law in some complex domain assuming that $np_n>\log^{\beta}n$, $\beta>0$ and some $(4+\delta)$-moment condition is fulfilled, $\delta>0$.

Key words and phrases: Random matrices, sample covariance matrices, Marchenko–Pastur law.

UDC: 519.2

Received: 20.09.2022

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024