RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2022 Volume 511, Pages 54–99 (Mi znsl7209)

This article is cited in 1 paper

Combinatoric of the karyon tilings

V. G. Zhuravlev

Vladimir State University

Abstract: In this article, we study the combinatorial properties of the karyon tilings $\mathcal{T}$ of the torus $\mathbb{T}^d$ of an arbitrary dimension $d$. Our main results are the following statements: 1) the karyon corona $\mathbf{Cr}$ contains all types of polyhedral stars of the $\mathcal{T}$ tilings; 2) the number of all faces of dimension $a$ of the tiling $\mathcal{T}$ is equal to $md!/((d-a)!a!)$, where $m$ is the order of tilling.

Key words and phrases: toric karyon tilings, classification, symmetries, combinatorics, local rules.

UDC: 511.3

Received: 06.01.2021



© Steklov Math. Inst. of RAS, 2025