Sturm-Liouville operators with $W^{-1,1}$-matrix potentials
Ya. I. Granovskiya,
M. M. Malamudb a Donetsk National Technical University
b Peoples' Friendship University of Russia, Moscow
Abstract:
In the present work the spectral structure of realizations of a matrix three-term Sturm-Liouville operator
\begin{equation*} \mathcal{L}(P,Q,R)y:=R^{-1}(x)\bigl(-(P(x)y')'+Q(x)y\bigr), y=(y_1,\ldots,y_m)^{\top}, \end{equation*}
with singular potential
$Q( \cdot ) = Q( \cdot )^*$ on the half-line and line is investigated. It is shown that under certain conditions on the coefficients
$P( \cdot )$ and
$R( \cdot )$ the Dirichlet realization
$L^D$ (and other self-adjoint realizations) in the case of $Q( \cdot )\in W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m\times m})$ has Lebesgue non-negative spectrum of constant multiplicity
$m$. In particular, Schrödinger operator with matrix potential $Q( \cdot )\in W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m\times m})$ has Lebesgue non-negative spectrum of constant multiplicity
$m$. This result is applied to the Sturm–Liouville expression
$\mathcal{L}(P,Q,R)$ with delta-interactions on the line
$\mathbb{R}$. It is shown that if the minimal operator
$L := L_{\min }$ in
$L^2(\mathbb{R};R;\mathbb{C}^m)$ is self-adjoint, then the non-negative spectrum of the operator
$L$ is Lebesgue of constant multiplicity
$2m$ whenever $Q( \cdot )\mathbf{1}_{\mathbb{R}_+}(\cdot) \in W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m\times m})$. In particular, if the minimal Schrödinger operator
$\mathbf{H}$ on the line with potential matrix $Q( \cdot )=Q_1( \cdot )+\sum\limits_{k\in\mathbb{Z}}\alpha_k\delta( \cdot -x_k)$, is selfadjoint,
$\mathbf{H} = \mathbf{H}^*$, then its non-negative spectrum is Lebesgue one of constant multiplicity
$2m$ whenever $Q_1( \cdot )\mathbf{1}_{\mathbb{R}_+}\in L^1(\mathbb{R}_+;\mathbb{C}^{m\times m})$ and
$\sum\limits_{k=1}^{\infty}|\alpha_k|<\infty$.
Key words and phrases:
Schrödinger operators, singular potentials, regularization, delta-interactions, boundary triplets, Weyl functions, absolutely continuous spectrum.
UDC:
517.9
Received: 26.10.2022