RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2004 Volume 315, Pages 5–38 (Mi znsl734)

This article is cited in 1 paper

Approximation by M. Riesz's kernels in $L^p$ for $p<1$

A. B. Aleksandrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $\alpha>0$. We consider the linear span ${\mathfrak X}_\alpha(\mathbb R^n)$ of scalar Riesz's kernels $\{\frac1{|x-a|^\alpha}\}_{a\in\mathbb R^n}$ and the linear span ${\mathfrak Y}_\alpha(\mathbb R^n)$ of vector Riesz's kernels $\{\frac1{|x-a|^{\alpha+1}}(x-a)\}_{a\in\mathbb R^n}$. We deal with the following questions.
1. When is the intersection ${\mathfrak X}_\alpha(\mathbb R^n)\cap L^p(\mathbb R^n)$ dense in $L^p(\mathbb R^n)$?
2. When is the intersection ${\mathfrak Y}_\alpha(\mathbb R^n)\cap L^p(\mathbb R^n,\mathbb R^n)$ dense in $L^p(\mathbb R^n,\mathbb R^n)$?

UDC: 517.5

Received: 20.06.2004


 English version:
Journal of Mathematical Sciences (New York), 2006, 134:4, 2239–2257

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024