RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2023 Volume 523, Pages 159–165 (Mi znsl7350)

On Gauss' rings and Deuring's argument

A. L. Smirnov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: The Dedekind rings multiplicativly indistinguishable with $\mathbb{Z}$ are classified. Certain inaccuracies of a previous paper are corrected. Deuring's reasoning related to the Riemann conjecture and the finiteness of the list of Gauss’ class number problem for imaginary quadratic 10-th discriminant problem are heuvristically explained.

Key words and phrases: generalized ring, Durov's approach, field with one element, noncommutative tensor square, field with class number one, Riemann conjecture.

UDC: 511.2

Received: 23.10.2023



© Steklov Math. Inst. of RAS, 2025