RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2004 Volume 315, Pages 96–101 (Mi znsl740)

This article is cited in 1 paper

Inverse problem for the discrete periodic Schrödinger operator

E. Korotyaeva, A. Kutsenkobc

a Humboldt-Universität zu Berlin, Institut für Mathematik
b Saint-Petersburg State University
c Universität Potsdam Institut für Mathematik

Abstract: We study the isospectral sets for the discrete 1D Schrödinger operator on $\mathbb Z$ with a N+1 periodic potential. We show that for small odd potentials the isospectral set consists of $2^{(N+1)/2}$ elements, while for the large potentials the isospectral set consists of $(N+1)!$ elements. Moreover, the asymptotics of the end of the spectrum of the Schrödinger operator for small (and large) potentials are determined.

UDC: 517.5

Received: 20.04.2004


 English version:
Journal of Mathematical Sciences (New York), 2006, 134:4, 2292–2294

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025