Abstract:
The Jordan structure of matrices of the Lie algebra of a complex orthogonal group, nilpotent case, is considered. These matrices have an arbitrarily complicated Jordan structure, under the known condition that the number of Jordan blocks of even size is even. A normal form for such matrices is proposed. Gram matrices of Jordan chains are described.
Key words and phrases:Lie algebra of complex orthogonal group, Jordan normal form, cyclic chains of vectors.