RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2004 Volume 315, Pages 149–154 (Mi znsl744)

Remark about the maximum of the modulus of an analytic function on the boundary

N. A. Shirokov

Saint-Petersburg State University

Abstract: Let $\Lambda^{\alpha}$ be the analytic Hölder class in the unit disc $\mathbb D$. For $f\in \Lambda^{\alpha}$ and $I\subset\partial\mathbb D$, let $M_f(I)=\max_I|f|$. Assume that $I$, $J$ are arcs such that $|J|=2|I|$, $J$ and $I$ have common middle point. Then
$$ M_f(J)\le C(\alpha,f)\frac{|I|^{\alpha}+M_f(I)}{\log^{\alpha}\Bigl(\frac{|I|^{\alpha}}{M_f(I)}+2\Bigr)}. $$
It is proved that this estimate cannot be improved.

UDC: 517.5

Received: 06.09.2004


 English version:
Journal of Mathematical Sciences (New York), 2006, 134:4, 2320–2323

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025